
1 Probability of Eve measuring the key
Given an ε-secure QKD protocol, we want to bound the probability that Eve
measures the key in her register. After the QKD protocol we have a ρreal which
is ε-close to some ρideal ∈ Sideal. As ρreal is difficult to work with, we find the
probability on ρideal.

After QKD, Eve can run some post-processing E in order to try to arrive at
the key. This is an operation that only applies to Eve’s register, so we can the
operation on the whole state as I ⊗ I ⊗ E . This operation just maps ρE to an
unknown ρ′E.

ρideal =
∑

k∈{0,1}n

2−n|k〉〈k| ⊗ |k〉〈k| ⊗ ρE

ρ′ideal =
∑

k∈{0,1}n

2−n|k〉〈k| ⊗ |k〉〈k| ⊗ E(ρE) =

=
∑

k∈{0,1}n

2−n|k〉〈k| ⊗ |k〉〈k| ⊗ ρ′E

We want to bound the probability Pr[kA = kE] where kA, kE refer to Alice and
Eve’s key registers. We define Pk as a projector which measures a certain k on
both Alice’s and Eve’s registers. Then Pr[kA = kE] is the sum of applying these
Pk’s on the density op.

Pk = |k〉〈k| ⊗ I ⊗ |k〉〈k|
Pr[kA = kE] =

∑
k∈{0,1}n

tr Pkρreal ≤
∑

k∈{0,1}n

tr Pkρideal =

=
∑

k∈{0,1}n

tr Pk(
∑

k′∈{0,1}n

2−n|k′〉〈k′| ⊗ |k′〉〈k′| ⊗ ρ′E)

=
∑

k∈{0,1}n

tr 2−n(|k〉〈k| ⊗ I ⊗ |k〉〈k|)(
∑

k′∈{0,1}n

|k′〉〈k′| ⊗ |k′〉〈k′| ⊗ ρ′E)

=
∑

k∈{0,1}n,k′∈{0,1}n

tr 2−n|k〉〈k||k′〉〈k′| ⊗ |k′〉〈k′| ⊗ |k〉〈k|ρ′E

Now |k〉〈k||k′〉〈k′| is multiplied with 0 when k 6= k′. This is because |k〉 are all
basis states, and 〈k||k′〉 = 0 if they’re not equal, 1 otherwise. Thus the double sum
simplifies.
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∑
k∈{0,1}n,k′∈{0,1}n

tr 2−n|k〉〈k||k′〉〈k′| ⊗ |k′〉〈k′| ⊗ |k〉〈k|ρ′E =
∑

k∈{0,1}n

tr 2−n|k〉〈k| ⊗ |k〉〈k| ⊗ |k〉〈k|ρ′E =
∑

k∈{0,1}n

tr 2−n|k〉〈k|ρ′E = 2−n

These last steps used a few properties that we now explain hold for computational
basis vectors i and any density operator σ.

First we use the fact that for a computational basis vector i, tr |i〉〈i|⊗σ = tr σ.
This is because |i〉〈i| has only a 1 somewhere on the main diagonal. And thus
|i〉〈i| ⊗ σ will put σ along the main diagonal.

|i〉〈i| =



0 . . . 0 . . . 0
0 . . . ... . . . 0
0 . . . 1 . . . 0
0 . . .

... . . . 0
0 . . . . . . . . . 0

 , |i〉〈i| ⊗ σ =



0 . . . 0 . . . 0
0 . . . ... . . . 0
0 . . . σ . . . 0
0 . . .

... . . . 0
0 . . . . . . . . . 0


Thus it is easy to see that tr |i〉〈i| ⊗ σ = tr σ.
Second, to see that for computational basis vectors k, ∑

k∈{0,1}n tr 2−n|k〉〈k|ρ′E =
2−n, we have that

σ =
∑
ij

αij|i〉〈j|

tr |k〉〈k|σ = tr |k〉〈k||k〉〈k|σ = tr |k〉〈k|σ|k〉〈k|
= tr |k〉〈k|(

∑
ij

αij|i〉〈j|)|k〉〈k| =

= tr
∑
ij

αij|k〉〈k||i〉〈j||k〉〈k| =

= tr αkk|k〉〈k| = αkk

And αkk is the k-th element on the diagonal, applying this for all k gives us all the
elements of the diagonal, which is the full trace of σ. The third property we used
was that the trace of a density matrix is 1 by definition.

And thus we have shown that for a ρideal, the probability of Eve measuring
the key is 1

2n . However, as ρreal is ε-close to ρideal from QKD, we know that the
probability of measuring the key is ε+ 1

2n .
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2 SMT from QKD
Now that we’ve gotten familiar with the security definition of QKD, let’s try to
use the keys from a secure QKD protocol in other situations. First we’ll look at
secure message transfer, and then we’ll look at how the keys can be used to log in.

2.1 Setup and security def
The protocol works as follows:

• Alice and Bob perform the ε-secure QKD protocol to get keys KA and KB.
If QKD aborts, we cancel.

• To secure a message m, Alice sends Bob the state |c〉 := |m⊕KA〉1. Since
we assume the channel is public, she also sends this to Eve.

• Bob retrieves the ciphertext and retrieves the original message by retrieving
|m′〉 = |c⊕KB〉. Since KA = KB after the error-correction of QKD, this just
returns the original m.

A

B

C

⊕m

QKD

Em

Figure 1: The quantum operator Em for sending message m.

We denote sending the message m (after QKD has already been run) as a
quantum operator Em. This is just a natural application of the one-time pad in
our setting. But is this protocol secure? As usual, the answer to this is "What do
you mean by secure?" as there are many different notions of security, and choosing
the right definition depends on what the protocol is used for.

1While these are really classical values, I’ll keep them as basis vectors of a quantum system
since it allows me to use density operators naturally. Also note that the XOR operation can
be easily done with a unitary as it just shuffles the computational basis states around and is
self-inverse.
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In our case, let’s say we only want that Eve learns nothing about the message.
The most natural way to go about formalizing this is to say that Eve can’t
distinguish between the ciphertexts of any two messages. Since Eve had the small
probability ε of succeeding in learning something from QKD, we must also limit
ourselves to saying that Eve can distinguish with some small probability δ. We’ve
already seen how trace distance captures the idea of distinguishability between two
density operators.

∀E,m0,m1 TD(trAB ρm0 , trAB ρm1) ≤ δ

The above definition looks at the view of Eve, which is why the registers of Alice
and Bob are traced out (remember that limiting our view is also what partial trace
models).

2.2 Security proof overview
Now let’s look at two runs of the SMT protocol for some m0,m1 and try to bound
the distance between them. The main idea is to use ideal "intermediate"
steps to get a bound on the maximum distance from one state to the
other.

First, both of them run the QKD protocol, giving them each a ρ̃realm which is
ε-close to ρ̃ideal. Note that the ρ̃ideal is the same for both runs, because the ρ̃ideal

is fixed for a given adversary and we’re using the same Eve in both runs. In the
schematics one run is represented on the right, and the other on the left.

ρ̃realm0
ρ̃realm1ρ̃ideal

ε ε

Figure 2: Bound on distance when only QKD has been run.

And since they’re both ε-close to the ideal, we know that TD(ρ̃realm0
, ρ̃realm1

) ≤
2 · ε.

We then run the rest of the SMT protocol, applying Em1 and Em0 in both
the real and ideal cases. Note that since applying some operation can only lose
information, TD(E(ρ), E(τ)) ≤ TD(ρ, τ) which is something we already saw in the
trace distance lecture. Thus the distance between the reals and the ideals will not
grow larger than ε. But the distance between the corresponding ideal cases can
grow. TD(Em0(ρ̃ideal), Em1(ρ̃ideal)) 6≤ TD(ρ̃ideal, ρ̃ideal) as we’re applying different
operators to each side.

However, the thing we care about is the distance between the two message
states from Eve’s perspective, and to get this limited view of the system we used
the partial trace. Since we know from one of the homework tasks that the partial

4



ρ̃realm0
ρ̃realm1ρ̃ideal
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ρ̃′realm0
ρ̃′realm1

ρ̃′idealm0
ρ̃′idealm1

ε ?? ε

Em0 Em0 Em1Em1

Figure 3: Bound on distance when SMT has been run.

ρ̃realm0
ρ̃realm1ρ̃ideal

ε ε

ρ̃′realm0
ρ̃′realm1

ρ̃′idealm0
ρ̃′idealm1

ε ?? ε

Em0 Em0 Em1Em1

ρ̃′′realm0
ρ̃′′realm1

ρ̃′′idealm0
ρ̃′′idealm1

ε σ ε

trA,B trA,BtrA,B trA,B

Figure 4: Bound on distance when SMT has been run, Eve’s view only.

trace is also a quantum operator, it also preserves the trace distance bounds. This
is pictured on Figure 4.

The states ρ̃′′realm0
, ρ̃′′realm1

correspond to the states in the security definition for
the SMT protocol - they’re density operators after we’ve ran the protocol for two
different messages and traced away Alice and Bob’s part. So we know that our
scheme is δ = ε+ σ + ε-secure. However, we currently don’t know how large σ can
be - if it is very large, the scheme is still insecure.

2.3 Upper bound of σ
We have shown that the security of the scheme comes down to finding a bound
on the size of σ. This is much easier to do, because we’re no longer dealing with
the "real" states, which can be difficult to express and work with as they can have
errors. The ideal case ρ̃ideal (the state after only QKD has been run) is simply

ρ̃ideal = p(2−n
∑

x∈{0,1}n

|x〉〈x|A ⊗ |x〉〈x|B ⊗ ρE) + (1− p)ρabort

The A,B subscripts distinguish between what parts belong to Alice and Bob.
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Then for m0, the state after running SMT is

Em0(ρ̃ideal) =p(2−n
∑

x∈{0,1}n

|x〉〈x|A ⊗ |x〉〈x|B ⊗ |x⊕m0〉〈x⊕m0|B ⊗ |x⊕m0〉〈x⊕m0|E ⊗ ρE)

+ (1− p)ρabort = ρ̃′idealm0

It may be helpful to look at Figure 1 again to orient yourself in this formula. Now
to get ρ̃′′idealm0

, we only need to trace away Alice and Bob’s systems and leave only
Eve’s part. Because |x〉〈x| has trace 1 for basis states x, this is quite simple.

trA,B ρ̃′idealm0
= p(2−n

∑
x∈{0,1}n

|x⊕m0〉〈x⊕m0|E ⊗ ρE) + (1− p)ρ′abort

= ρ̃′′idealm0

You may have noticed we haven’t dealt with the abort state at all - this is because
it is always the same, as we don’t run SMT if we abort. However, here we still need
to trace the abort state as well, as we’re still limiting our view (and the matrices
need to be the same size to add together).

Now you may remember from Homework 3 task 1.b that applying a unitary to
an equal superposition of basis states does nothing.

2−n
∑

x∈{0,1}n

U |x〉〈x|U † = 2−nU
∑

x∈{0,1}n

U † = 2−nUIU †

= 2−nUU † = 2−nI = 2−n
∑

x∈{0,1}n

|x〉〈x|

In our case, we’re applying an XOR function where this is especially easy to see
as it just maps basis states to other basis states. And since each basis state has the
same probability2, this shuffling around does nothing. And since ρE is independent
from x, we can now reindex the basis states. This is the exact same reason why a
one-time pad works.

ρ̃′′idealm0
= p(2−n

∑
x∈{0,1}n

|x⊕m0〉〈x⊕m0|E ⊗ ρE) + (1− p)ρ′abort

= p(2−n
∑

x∈{0,1}n

|x〉〈x|E ⊗ ρE) + (1− p)ρ′abort

Now notice that the above state is completely independent from the choice of
m0. If we were to compute the same process using e.g. m1, we would get the exact
same result. And since they’re the exact same state, σ = TD(ρ̃′′idealm0

, ρ̃′′idealm1
) = 0.

And thus our SMT protocol is δ = ε+ σ + ε = 2 · ε-secure.
2Probability rather than amplitude because we have a distribution of classical states when we

have
∑

x px|x〉〈x|, not a superposition
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